If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2-8a-45=3
We move all terms to the left:
a^2-8a-45-(3)=0
We add all the numbers together, and all the variables
a^2-8a-48=0
a = 1; b = -8; c = -48;
Δ = b2-4ac
Δ = -82-4·1·(-48)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-16}{2*1}=\frac{-8}{2} =-4 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+16}{2*1}=\frac{24}{2} =12 $
| 80+7x-5+7x+7=180 | | 8-2w=20 | | 15x+11=48 | | j=54/6 | | 75+x+47+x+82=180 | | u=30/5 | | 1.5d+7.75=4+2.75 | | 5y-13=-43-3y | | -4x-3=4x=3 | | f/10=2 | | (x-6)^2=10 | | k=16/4 | | 70+x+70+x+60=180 | | 5(3x-9=2(6x+9 | | -5(x-6=15 | | -5(5x+3)-5x+5=-50 | | 3t=4.8t-6 | | 4x-7=-3+14 | | 5x–5=20 | | u=2(9) | | 16=4b-14 | | 12/4=p | | 12x=48+6x | | 2y+3=3y+6 | | Y=22+-3x | | 4b-5b=-b | | 70+70+x+47=180 | | 10/3=x5/2 | | 3x+5+4x-5+6x-10=180 | | 15-8x=-7x-6x | | -3x-5=16* | | 4y^+16y=0 |